

NEUROSOME: First training event

H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019

NEUROSOME Exploring The Neurological Exposome UNICEF Multiple Indicator Cluster Survey (MICS)

BIOMONITORING OF LEAD IN A CHILDREN'S COHORT

<u>B. Fuentes</u>¹, F. Ruggieri¹, O. Senofonte¹, A. Pino¹, S. Caimi¹, A. Nadiradze², T. Ugulava², L. Sturua³, N. Gabriadze³, A. Alimonti¹

¹Istituto Superiore di Sanità, Roma, Italy ²UNICEF Georgia ³Georgian NCDC

This project has received funding from the European Union's H2020 Framework Programme under grant agreement No - GA - 766251

Heraklion, Crete, May 2019

Biomonitoring Of Lead In A Children's Cohort

A collaborative project by

UNICEF Georgia, Tbilisi, Georgia

Istituto Superiore di Sanità, Rome, Italy

Georgian National Center for Disease Control and Public Health, Tbilisi, Georgia

Outline

Coordinated by Alessandro Alimonti

**** * * ***

H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019

Georgias overview

Lead as permanent heatlh issue

Methodology

Results, finding and perspectives

Further reading

*** * * ***

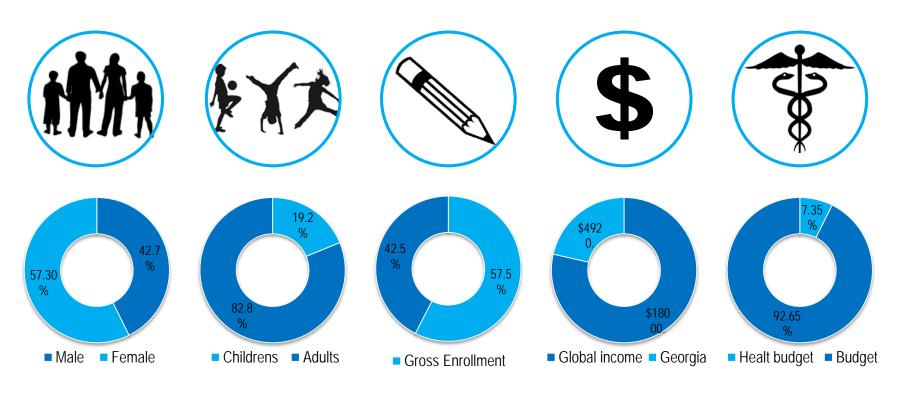
H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019

Georgia

Index	Value	Italian values
Population	3,717,100	60,551,416
GDP (MUS\$)	15.1	1,934.8
Life expectancy at birth (y)	73.26	82.5
Gross National Income (MUS\$)	9,186	41,154
Poverty headcount ratio at national poverty lines (%)	21.9	<0.6
HDI	0.780	0.880

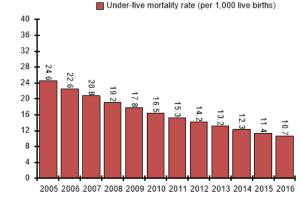
Source: World Bank, IARC. 2019



NEUROSOME: First training event

H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019


Source: World Bank, WHO, UNESCO. 2019

* * * * * * * * *

H2020-MSCA-ITN-2017 GA - 766251

Indicator		Geogia		Italy	
		Value	Year	Value	_
Births attended by skilled health personnel (%)	2014	99.9	2013	99.9	
Population using improved sanitation facility (%)	2015	86.3	2015	99.5	Deaths/1000 live births
Children aged 1 year immunized against measles (%)	2016	93.0	2016	85.0	eaths/1000
Probability of dying under five (per 1 000 live births)	2017	11.0	2017	3.4	
Population using improved drinking-water sources (%)	2015	100.0	2015	100.0	

Year

Source: World Bank, WHO. 2019

NEUROSOME: First training event

H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019

Lead, permanent health Issue

Lead (Pb)

Metallic element bluish-gray, with a presence of **0.0013%** on the earth crust.

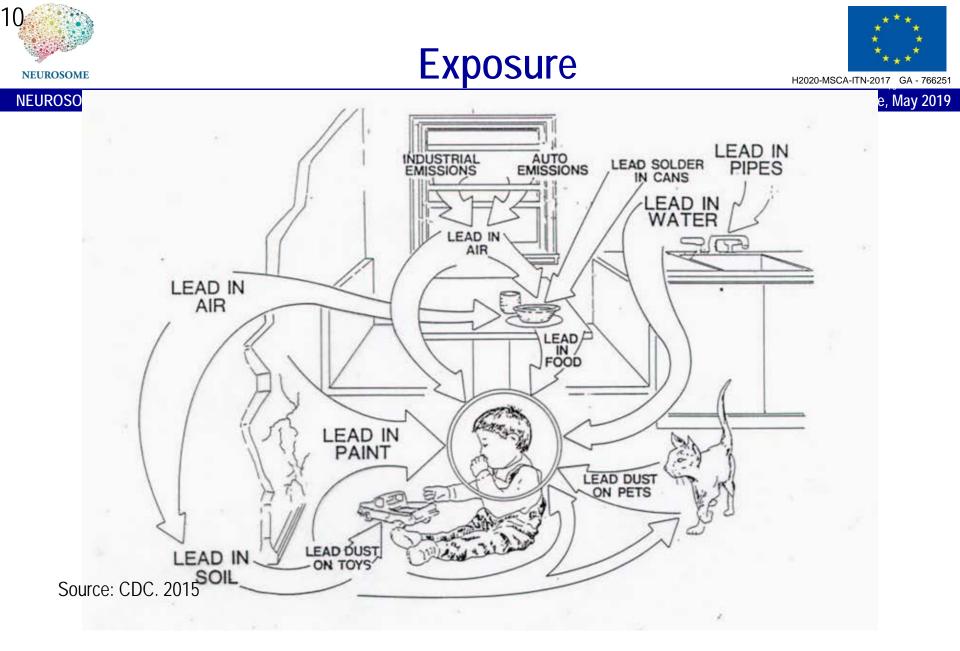
Rarely found in the elementary form, most frequently in mineral form as sulfide, sulfate, carbonate.

In the environmental is spread principal by industrial activities **mining**, **fuels**, **waste treatment**, among other.

Lead is a **non-essential** metal for biological activities on humans. The International Agency for Research on Cancer **(IARC)** has classified as **A2** (probably carcinogenic to humans).

Source: IARC. 2019

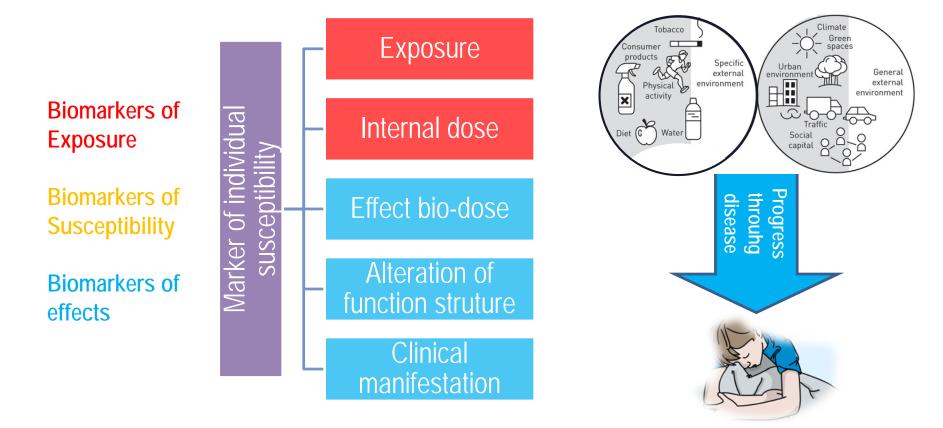
NEUROSOME: First training event


*** * * ***

H2020-MSCA-ITN-2017 GA - 766251

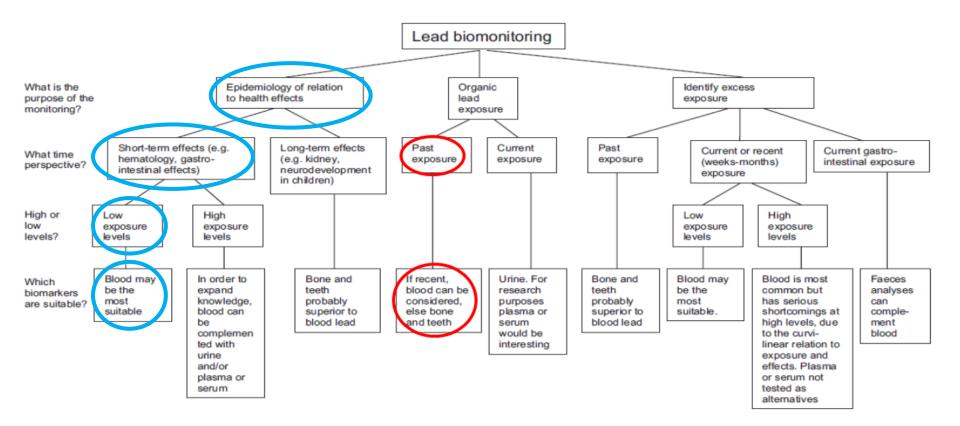
Routes of absorption	Percentage	
Breathing	40	
Ingestion	15	
Dermal and other	25	

Maximal lead levels in drinking water (WHO)	0.010 mg/L
Maximum daily diet burden children	1.32 -2.54 mg/
(EFSA)	kg b.w. per day

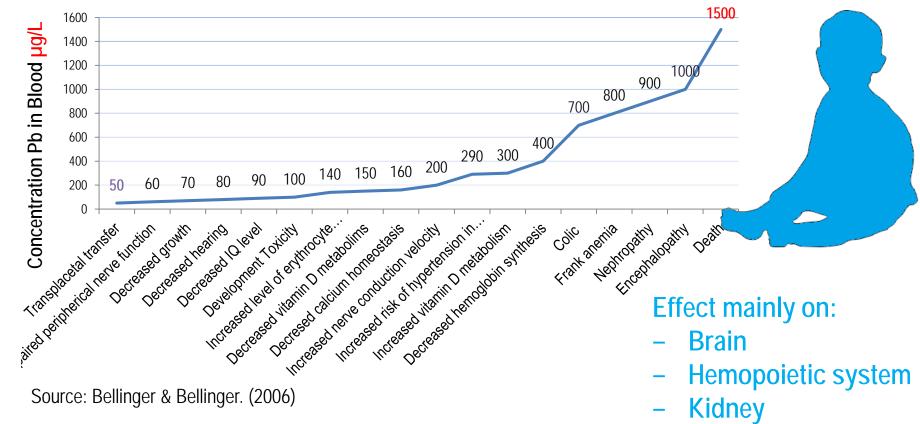


Heraklion, Crete, May 2019

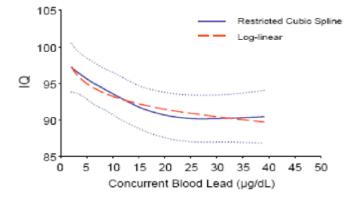
Exposure can be measured by biomarkers



Heraklion, Crete, May 2019


Choice of biomarker exposure

Pediatric health effects of lead



H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019

Neurotoxic effect of lead

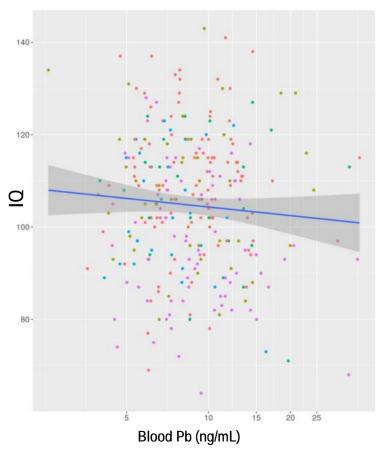
Relationship of Concurrent Blood Lead Concentration with Children's Intellectual Function

Effects on intra and intercellular signaling, **cell adhesion**, **protein folding**, **ionic transport**, **enzyme regulation**, **neurotransmitter release**, etc.

Action against brain learning and memory processes.

Ability to also **replace sodium (Na)** by altering the generation of action potentials in excitatory tissues.

Exposures even at **low concentrations can cause** a decrease in attention / hyperactivity (**ADHD**) in children.

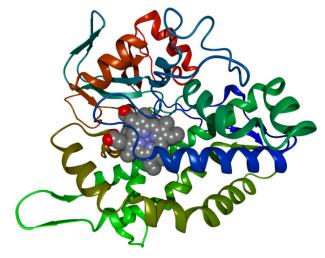

Source: Lanphear et. al. 2005

Heraklion, Crete, May 2019

IQ total in function of blood Pb (Taranto Study)

"... Note that the lead poisoning, although not in a statistically significant way, is constantly e negatively associated with IQ in all 5 models and the magnitude of the effect is comparable with that observed in other Italian territories (Lucchini et al., 2012a)..."

(Alimonti et. al., 2016)


Heraklion, Crete, May 2019

Hemopoietic system effects

Lead inhibits three important enzymesdelta aminolevulinic acid dehydratase, delta aminolevulinic acid synthase, and ferrochelatase.

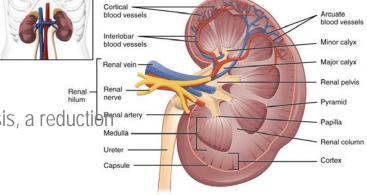
The critical target, however, seems to be the enzyme's heme synthesis, essential for the insertion of iron into the precursor, **protoporphyrin IX**. Derivate in are reduction of circulating levels of hemoglobin and the inhibition of **cytochrome P 450-dependent**

Inhibition of normal hemoprotein function, which results in basophilic stippling of erythrocytes related to clustering of ribosomes and microcytosis.

Cytochrome P 450

Source: Papanikolaou et. al. 2005

1



Kidney effects

Involves inhibition in the proximal tubular lining cells and renal insufficiency.

Early or acute nephropathy induce Fanconi's syndrome:

- Aminoaciduria
- Glycosuria
- · phosphaturia with hypophosphatemia, and
- increased sodium and
- decreased uric acid excretion

Chronic lead nephropathy generates progressive interstitial fibrosis, a reduction rate, and azothemia.

The acute form of nephropathy is most frequently in children. Studies show that Fanconi's syndrome can persist up to **13 years after lead poisoning**.

Source: Papanikolaou et. al. 2005

Direct cost

NEUROSOME: First training event

Medical treatment estimates in US expenses US\$ 43 billion annually.

Indirect cost

Educational services, institutionalization or even incarceration of people who suffered lead. **Benefits**

For every **US\$ 1** spent to reduce lead hazards, there would be a benefit of **US\$17–220**. Studies calculates increase children's intelligence, can traduce in benefit of between US\$ **110billion** and **US\$ 319 billion** in each birth cohort in the United States

Source: Landrigan et al., (2002), Grosse et al., (2002), Gould, (2009)

Legislations and guidelines related to Pb (Since 1986) Vear Vear Guidelines/Act R

1986	86/278/EEC	Soil quality	50 – 300 mg/Kg
1994	98/24/EC	Occupational exposure	0.15 mg/m ³
1994	Directive 94/62/EC	Packaging	100 ppm by weight
1995	General standard for contaminants and toxins in food and feed	Food production	0.1–0.2 mg/Kg
1998	98/83/EC	Drinking water	10 μg/L
2000	Air Quality Guidelines for Europe	Air quality	0.15 µg/L
2001	Water quality: Guidelines, standards and health	Water quality	0.010 mg/L
2004	1935/2004/EC	Contact with Food	Limit do not defined
2006	Regulation (EC) No 2006/1881	Food production	Do not defined

Year	Guidelines/Act	Relative to	Limit
2008	2008/50/EC	Air quality	0,5 µg/m³
2009	Mortality and burden of disease attributable to selected major risks	General health	Limit do not defined
2009	1223/2009	Cosmetic Forbidden	
2010	Partnership for Clean Fuels and Vehicles	Air quality	Do not applies
2013	2013/39/EU	Surface water	1.2 μg/L
2011	2011/65/EU	Electrical items	0.1% by weight
2016	Integrated Review Plan for the National Ambient Air Quality Standards for Particulate Matter	s Air 0.15 µg/m ³	
2017	EU 2017/738	Toys production 3.4 mg/Kg	

Source: WHO, EC, EPA, Canadian Council of Ministers of the Environment 2019

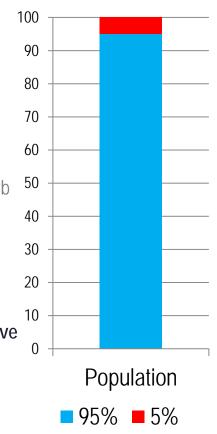
Reference Values (RVs)

21

NEUROSOME

Heraklion, Crete, May 2019

ACGIH provides a BEI of **30 µg/100 mL** for Pb in blood (occupational setting)


NHANES reports $1.12 \mu g/dL$ for Pb in blood and $0.46 \mu g/L$ in urine of the general adult US population.

GerES reports 70 µg/L for females, 90 µg /L for males and 33.8 µg/L for children for Pb in blood.

PROBE study reports a 21.6 µg /L for Pb in blood for the Italian for adolescents population.

The HBM's values, HBM I -alert value- HBM II -action value- for Pb in blood to date have been suspended.

Source: ACGIH, (2002). II NHANES, (2009-10). Bundesgesundheitsbl., (2009).

0	0	
Ĕ		
itoring	ð	
jį	nclude	
oni	Ĕ	
Moi	H	
<u>m</u>	that	
	S	
Iman	die	
In	n	
Ŧ	5	

Year(s)	Name of the Study or Acronym	Country/ Region	Population	
2003-2015	NHANES	USA	General population	
2005,2008	KorSEP	Korea	Adults	
2006-2007	ENNS	France	General population	
2007–2019	CHMS	Canada	General population	
2008	Cz-HBM	Czech Republic	General population	
2009-2010	BIOAMBIENT.ES	Spain	Adults	
2005-2009	LIFE-study	EEUU	Adult (couples)	
1990-1992 2003-2006	GerES	Germany	Adults Children	
2008-2010	PROBE	Italy	Adult and adolescents	
1991-1992	ALSPAC	England	Mother-child pair	
1997-1999 2002-2008	INMA	Spain	Children	
1996	JECS	Japan	Mother-child pair	

Source: Lou et.al. (2014), Trierr et.al. (2017) Vogel, 2019.

	2
	•
o pr	
onitori include	
BioMonitoring that include PI	
Biol	
in the second se	
UE Ses	
di	
Human	, ,

Year(s)	Name of the Study or Acronym	Country/ Region	Population
1999-2008	Norwegian Mother and Child Cohort MoBa	Norway	Mother-child pair
2002-2006	Danish National Birth Cohort	Denmark	Mother-child pair
2002-2006	EDEN	France	Mother-child pair
2002-2006	The Generation R study	Netherlands	Mother-child pair
2002-2003	FLEH	Belgium	Mother-child pair
2003-2009	HELIX	EU	Mother-child pair
2007-2008	Rhea	Greece	Mother-child pair
2008-2011	MIREC	Canada	Pregnant Woman
2009-2012	IRNPQ	Canada	Mother-child pair
2006-2007	ENFAMS	France	Children
2007-2009	KANC	Lithuania	Children
2016	TARANTO	Italy	Children

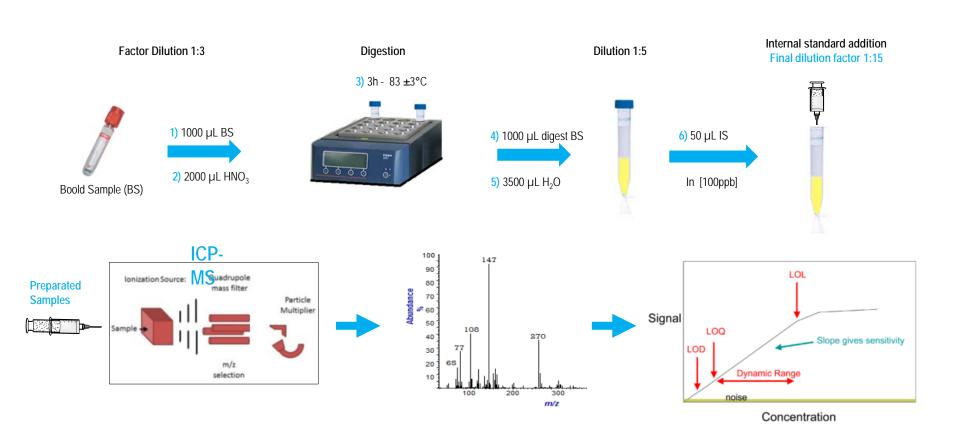
Source: Lou et.al. (2014), Trierr et.al. (2017) Vogel, 2019.

NEUROSOME: First training event

H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019

Methodology



NEUROSOME: First training event

25

NEUROSOME

Heraklion, Crete, May 2019

Heraklion, Crete, May 2019

Development and accreditation of the method

The analytical procedure validation process

First validation level

Evaluate method performances:

- specificity
- LoD and LoQ
- linearity
- trueness
- recovery
- intermediate precision

Develop Internal Quality Control (IQC) procedure:

- procedural blank
- calibration curve linearity
- recovery on IQC samples
- repeatability limit on IQC samples
- use of control chart (CC)

Calculate the expanded uncertainty

- uncentainty (U) associated through profile

Source: Ruggieri, Alimonti, Bocca. 2016

Second validation level

Participate to External Quality Assessment Schemes (EQUAS):

- identify a suitable Proficiency Testing (PT)
- participate to PT regularly
- verify the outcome and apply remedial action when necessary

ENTETIALIANO DI ACCREDITAMENTO

Full validation and accreditation of a method to support human biomonitoring studies for trace and ultra-trace elements

Trends in Analytical Chemistry 80 (2016) 471-485

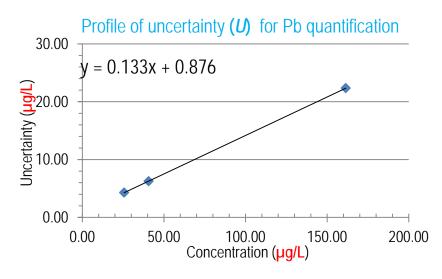
Contents lists available at ScienceDirect

Flavia Ruggieri, Alessandro Alimonti, Beatrice Bocca * Department of Environment and Health. National Institute for Health. Viale Regina Elena 299, Rome 00161, Italy

Flavia Ruggieri, Alessandro Alimonti, Beatrice Bocca *

piomonitoring studies for trace and ultra-trace elements

Heraklion, Crete, May 2019


Method used for Pb quantification

- Biological matrix: blood
- ²⁰⁸Pb
- Reference cetificed material used: ClinCheck® Level I (59.1 µg/L) and II (228 µg/L)
- Interval of concentration (sensitivity): $[ng/L \mu g/L]$

linearity: 0.50 – 500 µg/L

LoD: 0.45 µg/L LoQ: 1.48 µg/L **CV% recovery 80-120% (~106%)**

Uncentainty (U) associated through profile:

NEUROSOME: First training event

H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019

Result, finding and perspectives

Summary of Results

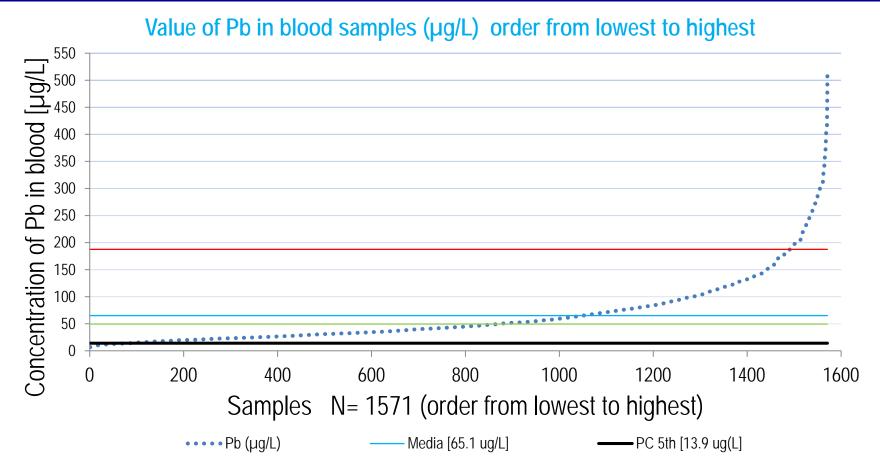
H2020-MSCA-ITN-2017 GA - 766251

NEUROSOME: First training event

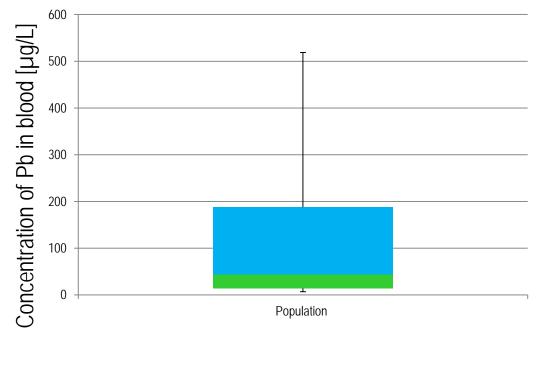
LoDs µg/L	Mn (μg/L) 0.47	As (µg/L) 0.27	Cd (µg/L) 0.24	Hg (µg/L) 0.48	Pb (μg/L) 0.45
	Mn (µg/L)	As (µg/L)	Cd (µg/L)	Hg (µg/L)	Pb (µg/L)
Samples N	1,571	1,571	1,571	1,571	1,571
media	12.9	1.66	1.05	0.86	65.1
min	3.00	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6.78</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6.78</td></lod<></td></lod<>	<lod< td=""><td>6.78</td></lod<>	6.78
max	94.9	43.1	11.5	11.9	518.5
mediana 50th	12.0	0.45	0.48	0.60	49.49
5th	7.10	0.28	0.25	0.49	13.94
95th	21.3	8.35	3.25	1.91	187.4

NEUROSOME: First training event

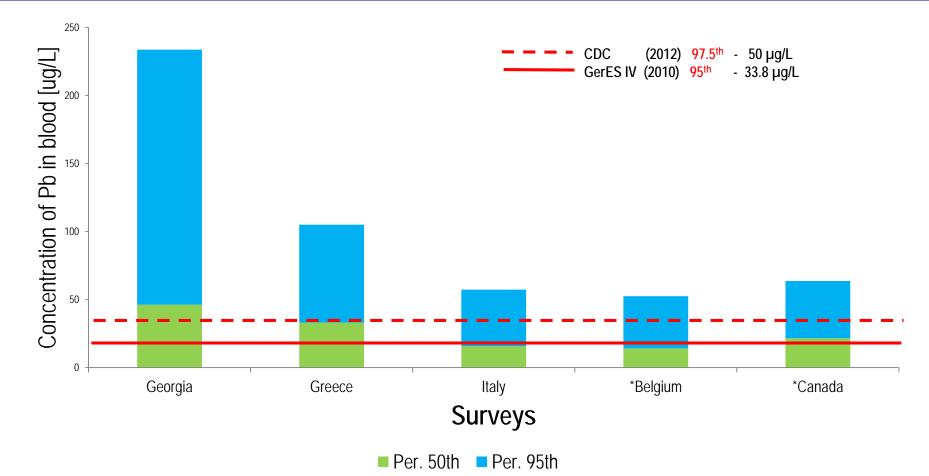
H2020-MSCA-ITN-2017 GA - 766251


Heraklion, Crete, May 2019

Lead (Pb)


H2020-MSCA-ITN-2017 GA - 766251

Georgia's children study 2019



■ 50th 43.9 µg/L ■ 95th 187.4 µg/L

Heraklion, Crete, May 2019

Finding and perspectives

The current world goal is to reduce exposure at the lowest level possible.

Georgian context a great challenge will be to evaluate the potential **lead sources**, both indoor and outdoor, as first attempt to reduce their contribution.

The generation and implementation **guidelines-police** in order the regulated the spread of lead in their environment.

35

NEUROSOME

H2020-MSCA-ITN-2017 GA - 766251

Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM. Lead toxicity update. A brief review. Med Sci Monit Int Med J Exp Clin Res. 2005 Oct;11(10):RA329-336.

Pachuta DG, Love LJC. Determination of lead in urban air particulates by microsampling cup atomic absorption spectrometry. Anal Chem. 1980 Mar 1;52(3):444–8.

Tan MG, Zhang GL, Li XL, Zhang YX, Yue WS, Chen JM, et al. Comprehensive Study of Lead Pollution in Shanghai by Multiple Techniques. Anal Chem. 2006 Dec 1;78(23):8044–50.

Cangemi M, Madonia P, Albano L, Bonfardeci A, Di Figlia MG, Di Martino RMR, et al. Heavy Metal Concentrations in the Groundwater of the Barcellona-Milazzo Plain (Italy): Contributions from Geogenic and Anthropogenic Sources. Int J Environ Res Public Health. 2019 Jan;16(2):285.

Tercier-Waeber M-L, Taillefert M. Remote in situ voltammetric techniques to characterize the biogeochemical cycling of trace metals in aquatic systems. J Environ Monit. 2008 Jan 4;10(1):30–54.

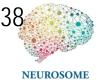
Wang W-X, Meng J, Weng N. Trace metals in oysters: molecular and cellular mechanisms and ecotoxicological impacts. Environ Sci Process Impacts. 2018 Jun 20;20(6):892–912.

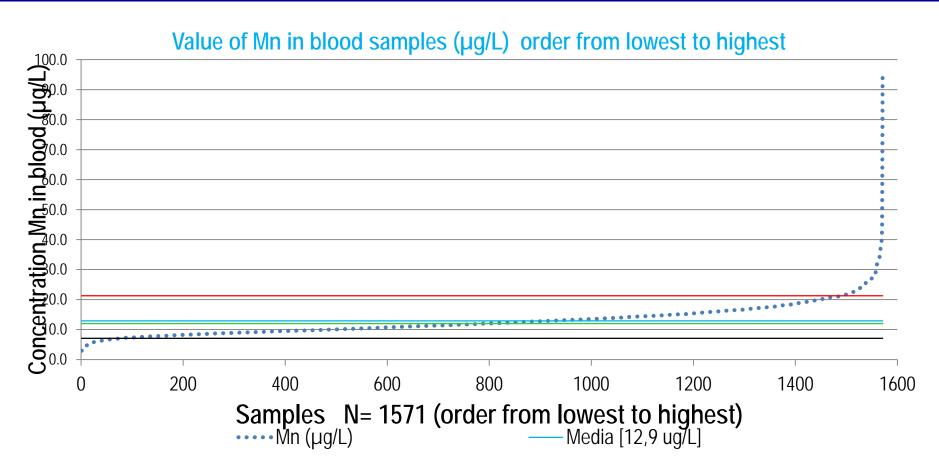
Maguire van Seventer J, Hamer DH. Foodborne Diseases. In: Quah SR, editor. International Encyclopedia of Public Health (Second Edition) [Internet]. Oxford: Academic Press; 2017. p. 160–73.

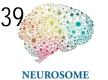
*** * * ***

H2020-MSCA-ITN-2017 GA - 766251

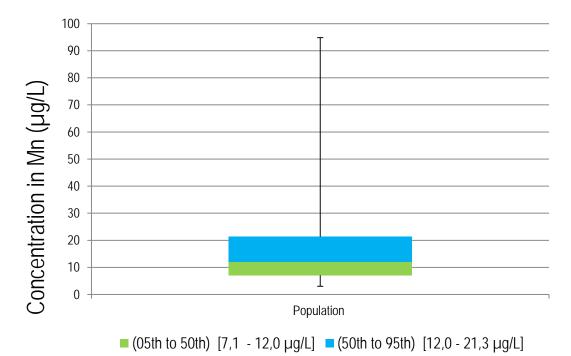
Heraklion, Crete, May 2019

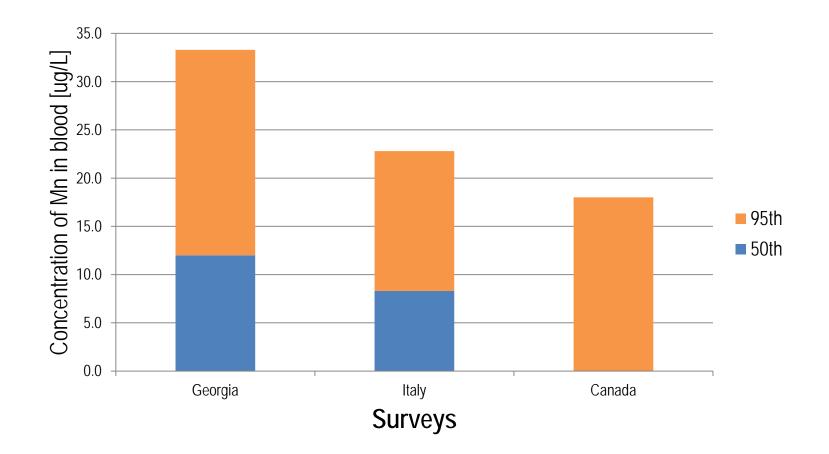

NEUROSOME: First training event


H2020-MSCA-ITN-2017 GA - 766251


Heraklion, Crete, May 2019

Manganese (Mn)

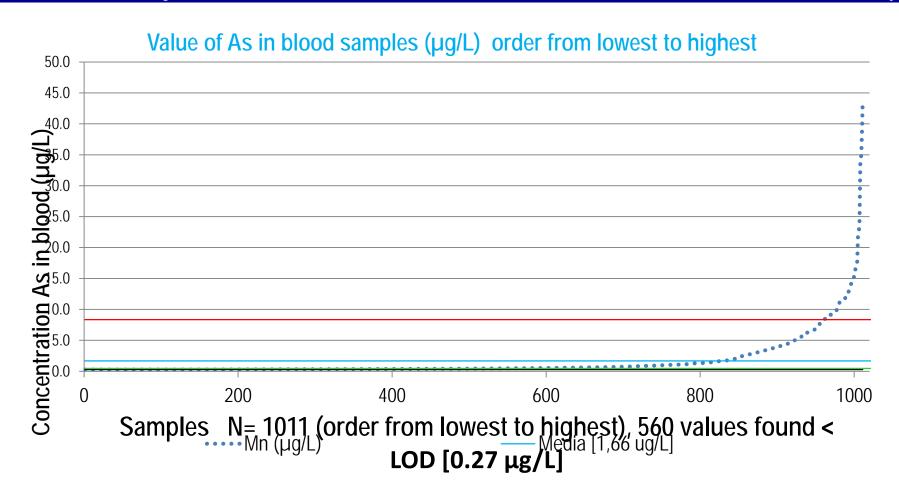




Georgia's children study 2019

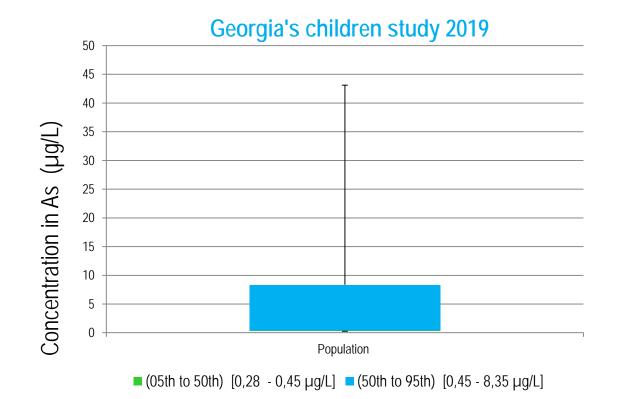
NEUROSOME

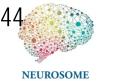
NEUROSOME: First training event

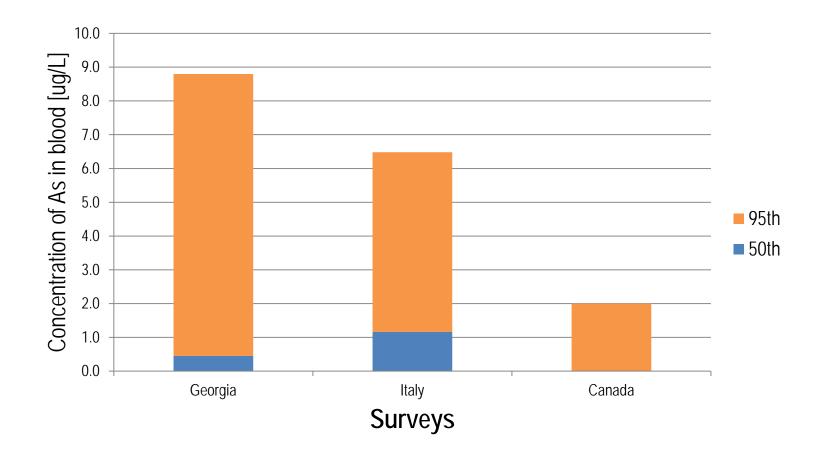

H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019

Arsenic (As)







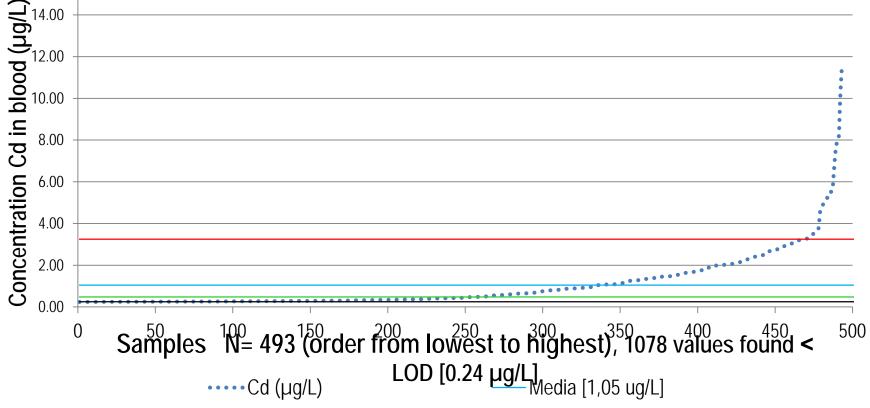
Heraklion, Crete, May 2019

NEUROSOME

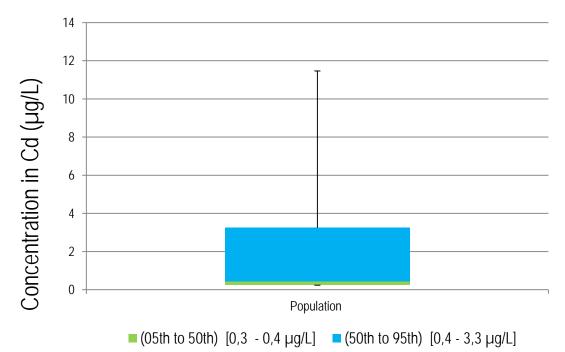
NEUROSOME: First training event

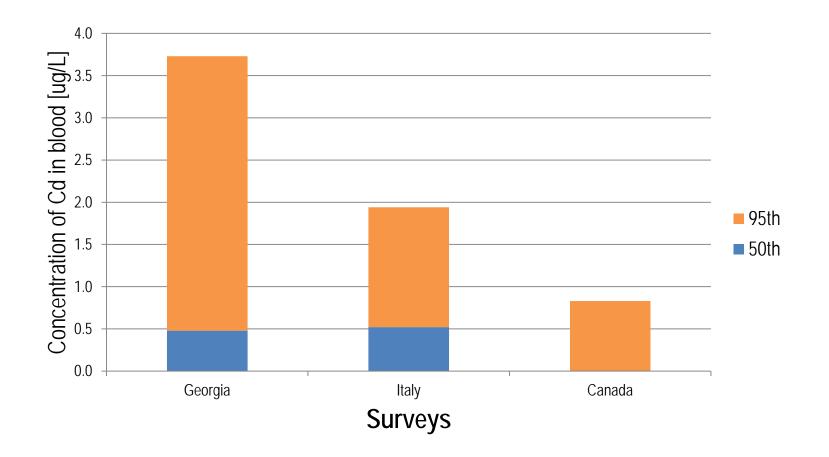
H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019


Cadmium (As)

H2020-MSCA-ITN-2017 76625 GA

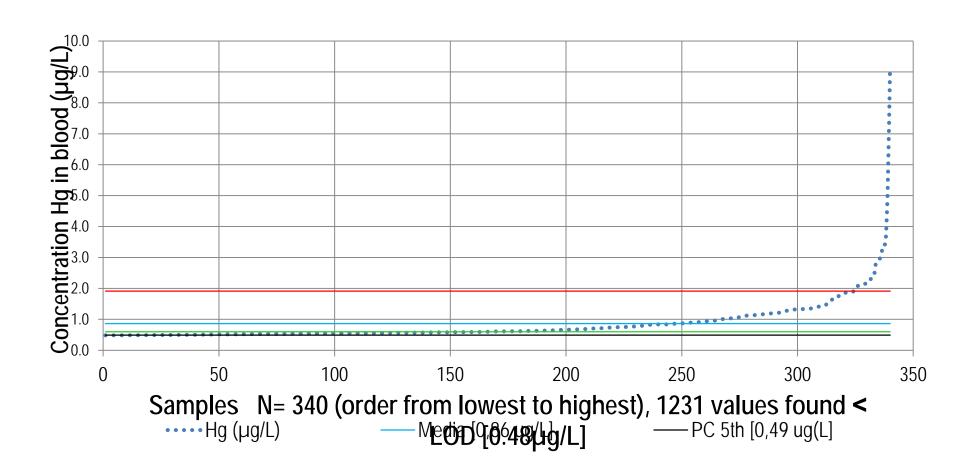

Value of Cd in blood samples (µg/L) order from lowest to highest



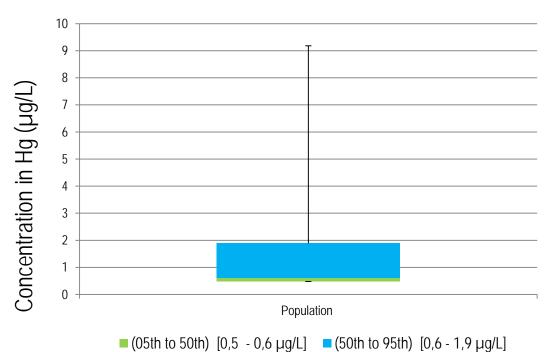
NEUROSOME


NEUROSOME: First training event

H2020-MSCA-ITN-2017 GA - 766251

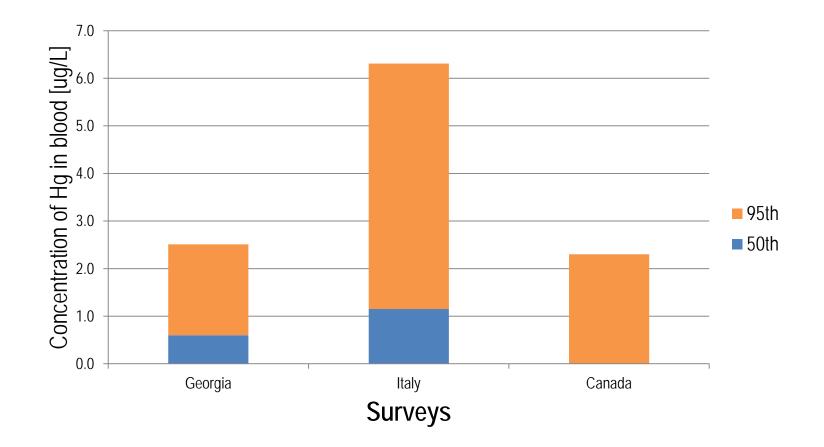

Heraklion, Crete, May 2019

Mercury (Hg)

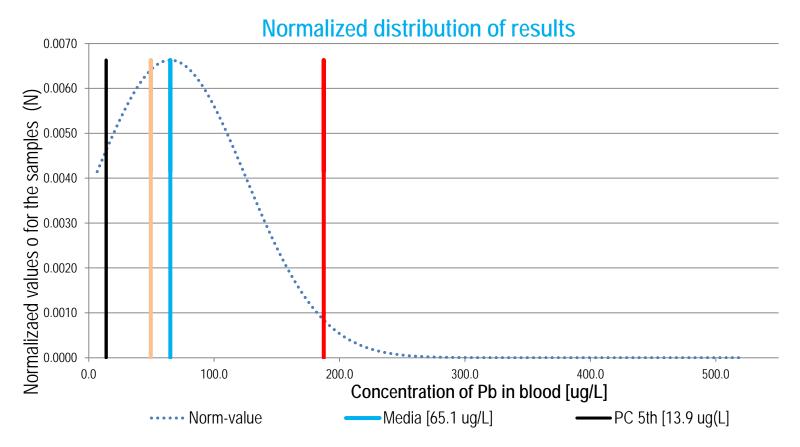


Heraklion, Crete, May 2019



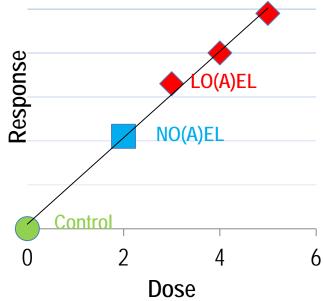


Georgia's children study 2019



Data from ISS - Esposizione umana a contaminanti ambientali (DAMSA) - 2019

Internal dose


H2020-MSCA-ITN-2017 GA - 766251

54

NEUROSOME

Heraklion, Crete, May 2019

Endocrinological					
75 men	Occupational	50–98 µg/dL (PbB range)	Decreased serum T_3 and T_4	No significant correlation for FT_4 and TSH in this PbB range. TSH, T3, FT4, and T4 increased in the range 8–50 µg/dL.	López et al. 2000
58 males, mean age 31.7 years	Occupational	51.9 μg/dL (mean PbB)	TSH significantly higher than in controls (mean PbB 9.5 µg/dL in controls)	Cross-sectional study. The association between PbB and TSH was independent of employment length. T3 was lower in a subgroup of 17 workers employed for 17.5 years than in those employed for 2.4 years.	Singh et al. 2000a
68 children, 11 months–7 years old	General population	2–77 µg/dL (PbB range) 25 µg/dL (mean PbB)	No effect on serum T_4 or FT_4	Covariates: sex, race, SES, and hemoglobin; 56% of the children had PbB <24 µg/dL.	Siegel et al. 1989
30 children, 1–5 years old	General population	33–120 µg/dL (PbB range)	Decreased serum Vitamin D levels	15 children with mean PbB of 18 μg/dL served as a comparison group.	Rosen et al. 1980
Immunological					
38 children, 3–6 years old	General population	РbB >10 µg/dL	Increased IgE and decreased IgG and IgM in females	35 children with PbB <10 µg/dL served as controls. No such effect was seen in males or in the combined analysis of males and females.	Sun et al. 2003
279 children, 9 months–6 years old	General population	1–45 μg/dL (PbB range)	Increased serum IgE	No other parameter of cellular or humoral immunity showed a signifi- cant association with PbB. Covariates: age, race, sex, nutrition, and SES.	Lutz et al. 1999

NEUROSOME: First training event

* * * H2020-MSCA-ITN-2017 GA - 766251

Heraklion, Crete, May 2019

Technique	Acronym	Limit of detection	Observations
Flame Atomic Absorption Spectrometry	FAAS		
Graphite Furnace Atomic Absorption Spectrometric	GFAAS		
Inductively Coupled Plasma Mass Spectrometry	ICP-MS		
Electrothermal Atomic Absorption Spectrometry	ETAAS		
Inductively coupled plasma optical emission spectrometry	ICP OES		
X-ray Fluorescence Spectrometry	XRF		
Neutron activation analysis	NAA		
inductively coupled plasma-optical emission spectrometry	ICP-OES		
Cold Vaporatomic Fluorescence Spectrometry	CVAFS		
Spectroscopy Extended X-Ray Absorption Fine Structure	EXAFS		
Sensings		Ν	Nainly for <i>in situ</i> work

Source: Sitko et.al., (2012), Losec et. al., (2015)

Istituto Superiore di Sanità

Piombo

	ATSDR, Agency for Toxic Substances and Disease Registry, 2007. Toxicological profile for lead. US Department of Health and Human Services, Public Health Service, Atlanta, USA.
	Gagan Flora, Deepesh Gupta, Archana Tiwari. Toxicity of lead: A review with recent updates. Interdiscip Toxicol. 2012; 5(2): 47-58.
	Talia Sanders, Yiming Liu, Virginia Buchner, Paul B. Tchounwou. Neurotoxic Effects and Biomarkers of Lead Exposure: A Review. Rev Environ Health. 2009; 24(1): 15–45.
GRAFI	April P. Neal, Tomas R. Guilarte. Mechanisms of lead and manganese neurotoxicity. Toxicol Res 2013; 2: 99-114.
	WHO Expert Committee on Food Additives (JECFA). Safety evaluation of certain food additives and contaminants. WHO Food Additives Series 64. World Health Organization, Ginevra, 2011.
	IARC, International Agency for Research on Cancer, 2006. Inorganic and organic lead compounds. Volume 87. IARC, Lione, Francia.
ŏ	Direttiva 98/83/CE del Consiglio del 3 novembre 1998 concernente la qualità delle acque destinate al consumo umano. Gazzetta ufficiale delle Comunità europee L 330, pp. 32-54
Ľ	WHO/SDE/WSH/03.04/09/Rev/1. Lead in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality World Health Organization 2011.
8	EPA-IRIS. Lead and compounds (inorganic). http://www.epa.gov/iris/subst/0277.htm.
7 B	EPA. Drinking Water Contaminants. http://water.epa.gov/drink/contaminants/index.cfm.
	EFSA. Metals as contaminants in food. http://www.efsa.europa.eu/en/topics/topic/metals.htm.

www.iss.it